Teaching Public-Key Cryptography in School*

Lucia Keller, Dennis Komm, Giovanni Serafini,
Andreas Sprock, and Bjorn Steffen

Department of Computer Science, ETH Zurich, Switzerland
{lucia. keller,dennis.komm,giovanni.serafini,andreas.sprock,
bjoern.steffen}@inf.ethz.ch

Abstract. These days, public-key cryptography is indispensable to en-
sure both confidentiality and authenticity in numerous applications which
comprise securely communicating via mobile phone or email or digitally
signing documents.

For all public-key systems, such as RSA, mathematically challenging
and technically involved methods are employed which are often above
the level of secondary school students as they employ deep results from
algebra. Following an approach suggested in 2003 by Tim Bell et al.
in Computers and Education, volume 40, number 3, we deal with the
question of how to teach young students the main concepts, issues, and
solutions of public-key systems without being forced to also teach rather
complicated theorems of number theory beforehand.

1 Introduction

Cryptography is one among the topics in computer science that raise the interest
of most students of all ages. Naturally, it allows the teacher to create interesting
lessons including experiments and games. Complementing the well-known classical
cryptosystems, such as Caesar and Skytale [I], which are rather easy to understand,
in this paper we want to focus on communicating the ideas of mechanisms that are
actually used today. Some of the most widely used and popular cryptosystems (e. g.,
RSA, El-Gamal, .. .) are asymmetric methods based on the idea of one-way func-
tions with trap-doors. For many students it is fascinating that there are functions
in which computation in one way is easy and the computation of the inverse func-
tion is much harder. At this point, it is the challenge of didactics to introduce the
key issues behind this concept in a fashion as simple as possible. To explain the in-
tuitive idea, there is a famous example given by Salomaa [T4] using a phone book.
Since nowadays this example is not really applicable, we use a more sophisticated
model for our lectures. We took the idea from “CS unplugged” [2] and attempted
to duplicate the positive results concerning the progress of students [3] similar to
the work of Nishida et al. in Japan [I2]. In contrast to their work, we only focused
on one specific topic from “CS unplugged”.

To describe our concept in greater detail, we first need to give a quick overview
of the most important facts about public-key cryptography. The need for

* This work was partially supported by the Hasler Foundation, project “Kantonales
Fortbildungszentrum Informatikunterricht”, and by FILEP grant 351 of ETH Zurich.

J. Hromkovi¢, R. Krélovi¢, and J. Vahrenhold (Eds.): ISSEP 2010, LNCS 5941, pp. 112 2010.
© Springer-Verlag Berlin Heidelberg 2010

Teaching Public-Key Cryptography in School 113

asymmetric cryptosystems arises from the following problem: when using
symmetric-key cryptosystems, at least two parties share a secret (i.e., a key)
which they use to encrypt and decrypt messages from plaintext to ciphertext
and the other way around. In the real world, however, a serious problem arises
when trying to share the key, because clearly, in general, the two entities (in
this scenario, say two persons Alice and Bob) do not have a secure channel to
communicate yet. Many strategies have been proposed to solve this problem,
among which one of the most famous certainly is the Diffie-Hellman key ex-
change protocol [§]. However, on the downside, using this protocol still requires
the creation of approximately n? keys if n parties want to securely communicate
with each other. In 1978, one of the first and (up to today) most widely used
public-key cryptosystem, namely RSA, was introduced [I3]. Here, it suffices to
create n key pairs for a scenario as above. For more details, we refer to the
standard literature [I1[7].

The main idea behind public-key (or asymmetric) cryptosystems is the follow-
ing: one entity has (in contrast to symmetric cryptosystems) a pair of keys which
are called the private key and the public key. These two parts of the key pair
are always related in some mathematical sense. As for using them, the owner of
such a key pair may publish her public key, but it is crucial that she keeps the
private key only for herself. Let (sk, pk) be such a key pair where sk is Alice’s
secret private key and pk is the corresponding public key. If a second person Bob
wants to securely send Alice a message M, he computes C' = encrypt(M, pk)
where encrypt denotes the so-called encryption function which is also publicly
known (see Fig. [Ml). This function is a one-way function with a trap-door. In
other words, the trap-door allows for the creation of the secret key sk which
in turn enables Alice to easily invert the encryption function. We call C' the
ciphertext. Obtaining M from C can be done easily using the (publicly known)
decryption function decrypt and Alice’s private key (sk). On the other hand, it
is much harder to decrypt without having any knowledge of the private key. As
already mentioned, the great advantage of this approach is that no secure key
exchange is necessary before a message is transmitted.

Since public-key cryptography is commonly used in many applications and set-
tings, it is very appropriate and promising to teach cryptography. However, since
the low level ideas and calculations require a lot of mathematical background, it is
very hard to discuss cryptosystems like RSA with students of secondary schools.

We therefore use a very simple and straightforward theoretical cryptosystem
from “CS unplugged” by Tim Bell et al. [2] that only involves some very easy

plaintext M
C = encrypt(M, pk)

ciphertext C > M = decrypt(C, sk)

insecure channel
(e. g., the internet)

Fig. 1. Scheme of using public-key cryptography

114 L. Keller et al.

mathematical ideas, but highlights the important principles of public-key cryp-
tography very nicely.

The paper is organized as follows. In Section [2] we describe the cryptosystem
used and explain its theoretical background. After that, we explain how to use
this approach to teach students the ideas of public-key cryptography and also
describe our experiences in Section[3 and @l Section [l discusses a concrete lesson
held in July of 2009 at a local secondary school in Switzerland. We conclude
with a reflection of the main ideas and open questions in Section

2 Technical Details for the Teachers

The cryptosystem used is based on a graph-theoretical problem which we de-
scribe in the following. First, we need some basic notations and definitions.

For n € N\ {0}, let V = {v1,va,...,v,} denote a set of vertices and E C
{{vi,v;} | 1,5 € {1,2,...,n},i # j} a set of edges. We then call G = (V,E) a
graph with n vertices and |E| edges. Furthermore, if for two vertices v; and v;
we have {v;,v;} € E, we call v; and v; adjacent (i.e., connected by an edge). For
i€{1,2,...,n}, let weight:V — Z, v; — w; be a vertex weight function where
the integer w; is called the weight of vertex v;. We call the pair (G, weight) a
weighted graph. For our investigations we need the following definition.

Definition 1 (Dominating set). Let G = (V,E) be a graph. A dominating
set — DS for short — is a set of vertices Vs C V' such that, for every vertex
v € V' \ Vis, there exists a vertex v € Vis with {v',v} € E.

A special variant of a DS has the additional property that, for every vertex
from V' \ Vi, there exists exactly one vertex in Vis such that {v',v} € E and
that no two wvertices from Vpg are adjacent. We call this special case an exact
dominating set — EDS for short — and the corresponding set Vipg.

In the following, we construct a graph with an EDS. The graph itself is used as
the public key and the set Vips as the secret key. Note that determining whether
a graph has an EDS is an N'P-complete problem [6]. Thus, finding an EDS in
a graph which is known to have an EDS is NP-hard, too. Again, consider two
persons Alice and Bob and assume that Alice wants to securely send a message
M to Bob. Bob therefore needs to create a key pair (sk, pk) to enable them to
encrypt and decrypt messages and therefore he takes the following steps.

a.1 Choose two arbitrary natural numbers ngps and ndom and let Vipg = {v1, va,
oy Unge b and Vgom = {v1,05,...,v,, } be two pairwise distinct sets of
vertices.

a.2 Set E = (). Then, for every vertex v’ € Vgom, choose ezactly one arbitrary
vertex v € Vipg and set E = EU {{v,v'}}, i.e., connect every vertex from
Viom to exactly one vertex from Vips.

a.3 Choose an arbitrary number of pairs (v;,v}) of vertices from Viom and set
E = EU{{v},v}}}, i.e., connect v; to v}.

(2

a.4 Set V = Vips U Vgom and G = (V, E).

Teaching Public-Key Cryptography in School 115

V1o

(a) An example graph G (b) An EDS for G

41 22

(¢) M distributed among G (d) The ciphertext C'

Fig. 2. An example of a graph G for encrypting the plaintext M =91 =2+ 15+ 8+
31+7+245+5+12+4

As already mentioned, the graph G = (V, E) is Bob’s public key pk (as shown
in Fig. @ (a)). Obviously, the set Vips forms an EDS which is immediately clear
by the way the edges of G are constructed in a.2 (as shown in Fig. 2 (b)). Bob
keeps Vips as the private key sk for himself and publishes G.

Now suppose that Alice wants to encrypt the plaintext message M using the
public key of Bob. Let M € N\ {0} be a natural number [] She acts as follows.

b.1 Write M as the sum)., w; where w; are integers which are randomly
chosen (except the last one).

b.2 Then define a weight function plain(v;) = w; for every v; € V. The “plain”
graph (G, plain) is shown in Fig. 2 (c).

b.3 For every vertex v € V, let neighbor(v) = {v' | {v,v'} € E} U {v} be the
set of all neighbors of v in G, i.e., all vertices which are adjacent to v and
v itself. We then define the function ciph: V — 7Z as

! Clearly, we may represent any text by natural numbers using, e.g., ASCII.

116 L. Keller et al.

ciph(v) = Z plain(v").

v’ €neighbor(v)

The weight function ciph is the ciphertext of M (as shown in Fig. 2] (d)). Ob-
viously, encrypt is the algorithm described by b.1 to b.3. The plaintext M, on
the other hand, can be easily calculated if the function plain is known. However,
Bob may simply use sk to receive the plaintext with

decrypt(C, sk) = decrypt(ciph, Vips) = Z ciph(v).

V€ Vips

Since Vips forms an EDS in V/, it holds that

Z ciph(v Z plain(v

vE Vips veV

An example for this cryptosystem and the plaintext M = 91 is shown in Fig.
for a graph with 10 vertices.

However, if sk is unknown, it is still possible to calculate the weights of all ver-
tices (i.e. the function plam) by solving a system of n linear equations which can
be done in O(n?) which clearly is extensively more time? than the computation
of M takes if Vipg i knownﬁ

More particular, for a given ciphertext, the message M =}, plain(v) can
be decrypted by solving a system of linear equations given for all v € V:

Z plain(v') = ciph(v)

v’ €neighbor(v)

For the example shown in Fig. 2l (d), we obtain the following system of linear
equations.

plain(vy) + plain(vs) + plain(vy) = ciph(vy) = 41
plain(vy) + plain(vs) = ciph(vy) = 22
plain(v1) + plain(vs) + plain(vy) = ciph(vs) = 41

plain(ve) + plain(vr) + plain(vs) + plain(vig) = ciph(vio) = 16

Please note that such a system might have one or infinitely many solutions,
but the sum is still unique. A reasonable definition of a secure cryptosystem for
teaching purposes is:

2 Note that the fastest known algorithm can solve a system of n linear equations
theoretically in O(n?357) [3].

3 That means that we still need to solve an ANP-hard problem to find sk, but for
a given public key and ciphertext (G, ciph), the plaintext M can be computed in
polynomial time.

Teaching Public-Key Cryptography in School 117

A cryptosystem is secure if there does not exist any efficient algorithm
that decrypts the cipher text without knowing the secret key used, but
knowing the way in which the cryptosystem works. [L1]

This implies that the cryptosystem introduced is not secure in this sense. How-
ever, it is still very adequate to explain asymmetric-key cryptography since we
can easily show our students the big discrepancy concerning the effort between
decrypting with and without knowing sk.

3 How We Teach Public-Key Cryptography

In what follows, we give an exemplary way of how to teach students the ideas
and concepts of public-key cryptography using the cryptosystem introduced in
Section

Usually the students had some previous classes, where we taught them the
basic concepts of classical (symmetric) cryptography.

3.1 Teaching Goals

We define the following teaching goals — they describe the minimal knowledge
the students should achieve after completing the teaching unit:

1. Students understand why in public-key cryptography two different keys are
needed for encryption and decryption. One is public, the second one must
be kept secret and is only known to the owner (is private).

2. Students are able to explain that everyone is able to encrypt the plaintext
with the public key, but only the owner of the related private key has the
means to decrypt the ciphertext.

3. Students are able to depict the decryption process as an easy task when a
secret information is known and as a practically infeasible one if this infor-
mation is not available.

4. Students are able to encrypt and decrypt messages correctly with the pre-
sented cryptosystem.

3.2 Introducing the Concept of Public-Key Cryptography

First, we motivate the need for public-key cryptography by showing that the
key management overhead of symmetric cryptography is high. We point out the
weaknesses of symmetric cryptosystems and propose the concept of having two
keys (a private and a public one) which clearly overcomes the disadvantages of
symmetric cryptosystems. We informally introduce one-way functions with trap-
doors and then ask the students whether they are familiar with anything like it
in everyday life.

As a first candidate of such a function, we describe the public-key cryptosys-
tem that uses a phone book [14]. Given a phone book (the public key), we can
encrypt a letter by choosing at random a name starting with this letter and then

118 L. Keller et al.

send the corresponding phone number instead. Clearly it is easy to find a name
starting with a given letter. On the other hand, it is hard to find the name which
belongs to a given phone number. But if the recipient has a special phone book
(the private key) which is ordered according to phone numbers, then she is able
to efficiently decrypt the message.

3.3 Teaching the Graph-Theoretical Cryptosystem

To give a more qualified cryptosystem we now explain the students the graph-
theoretical public-key cryptosystem discussed in Section

To do this, we first informally introduce them to graphs. For the cryptosystem
it is only important that the students know the notions of vertices, edges and
the concept of a meighborhood. Note that we do not describe what an exact
dominating set is, yet.

We now show the students an example graph G with n vertices that has an
EDS which is, of course, only known to us. This graph represents a public key
and we explain how to encrypt an integer (message) with this graph (as shown

in Fig. 2)):

Step 1. We draw the graph G on the blackboard to encrypt the message M.

Step 2. We write M as a sum of n integer summands.

Step 3. We write each of these numbers next to exactly one of the n vertices
(using some color, e. g., green) and ask the students if this is already a secure
ciphertext.

Step 4. We then show the students how to obtain the ciphertext by adding up
the numbers in the neighborhood of a vertex and writing the sum down in
some other color (e. g., red) next to the corresponding vertex. After calculat-
ing all red numbers, we clean out the green ones and say that the graph G
with the red numbers is our ciphertext.

Asking the same question as above, the students realize that it is now
not easy anymore to derive the plaintext given only the red numbers.

After all students know how to encrypt a message using this cryptosystem we
may carry out a little contest within the class. We form teams of two students
each. Every team is given two copies of a graph different from G on two pieces of
paper and they have to encrypt a message which they have chosen for themselves.
Now, the students can write the summands of the plaintext on one graph, each
number next to the according vertex. After calculating the numbers for the
ciphertext, they then write these numbers on the second piece.

When all teams are finished, we collect their ciphertexts and give each team
the same ciphertext that we have created beforehand. Their task is to find the
plaintext of the given ciphertext.

In the meantime, we demonstrate how easy the recipient can decrypt the
message. We do this by decrypting the messages of the teams very fast and show
them that we really found the corresponding plaintext. The students are usually
very impressed how fast we can do that, as they have not been able to decrypt
the given ciphertext, yet.

Teaching Public-Key Cryptography in School 119

After that, EDS are introduced on the board (usually, the students have gotten
an idea of how the secret key might work during the competition).

The next step is to demonstrate that it is a hard task to find an exact dominat-
ing set in a graph. Achieving this is rather easy. We simply hand out a drawing
of a big graph (n > 30) and ask the students to find its EDS.

Afterwards, we need to show that, on the other hand, it is an easy task to
design a graph which has an EDS which is only known to the creator of the
graph. Therefore, we draw a set of vertices to the board and mark them (again,
we might use some special color) as dominating vertices. After that, we draw
another set of dominated vertices in a different color. We then draw exactly
one edge from each dominated vertex to one dominating vertex. Finally, we add
various edges between the dominated vertices. It is obvious that the dominating
vertices now really form an EDS for this graph. After this is also clear to the
students, we color all vertices with the same color to “cover up our tracks”.

What should follow is a discussion on how difficult it is to decrypt the plain-
text with and without knowing the EDS. At this point, the students themselves
probably discovered the alternative way to decrypt the message (i.e., a system
of linear equations as described in Section B]). However, if not, we make them
familiar with this idea and write down such a system for the graph on the board.
Our students are then asked to solve it themselves. They will immediately realize
that this way is a lot harder than using the EDS.

The investigation of the running time of algorithms for solving a system of
linear equations may be as detailed as the student’s knowledge allows it to be.
In any case it is very important to show and to compare the two function graphs
so that the difference between decrypting with and without the secret becomes
clear, i.e., the linear function f(n) = n for the decrypting knowing the EDS
(we simply need to do less than n additions) and the function g(n) = n? for
decrypting via solving a system of linear equations.

4 General Experiences

We have been able to gather a multitude of experiences by applying our teaching
concept at various Swiss secondary schools which we describe in the following.

4.1 Introducing the Concept of Public-Key Cryptography

The students will certainly agree that the method in the example of the phone
book makes sense, but they are not very convinced that this method works in
practice, since, nowadays, with the help of digital phone books, anyone is able
to find the name to a given phone number efficiently. We also have to exclude
the option of calling the number and asking for the name.

This leads to the observation that this cryptosystem is rather artificial. But
none the less, the example is very qualified to introduce the basic concepts
of public-key cryptography and it gives a first idea of the difference between
decrypting with knowing the secret key and decrypting without knowing it.

120 L. Keller et al.

4.2 Teaching the Graph-Theoretical Cryptosystem

This example is a lot more serious and realistic and it has the big advantage
that we do not have to restrict the students in the same drastic way as for the
first candidate.

Of course, most students immediately realize that the message in step 3 is
not encrypted at all, since one can easily add up the green numbers. But this
question prepares the students for the following step and keeps their attention
on the distribution of the numbers.

The students enjoy the competition and are highly motivated to find the
secret of the decryption. In many classes that we taught, at least some groups
were successful, only a few needed hints [They also get the feeling that this
cryptosystem is more “serious” than using phone books, because now they see
that it is not immediately clear how to find the plaintext.

At this point, some students discovered that they can get M using a system of
linear equations. In this case, we simply told them that this still takes very long
and there is a way which is a lot faster. We then postponed a detailed discussion
of the running time of both methods to a point when the second technique (i. e.,
using the EDS) is also discovered.

5 An Example Lesson at a Secondary School

In this section, we informally describe an implementation of the presented method
at a secondary school in Zurich at the beginning of July 2009. Classes other than
languages and literature are taken either in German or in Italian [9].

The Swiss secondary school system is extremely heterogeneous. A common
Swiss-wide frame of regulations [4] is implemented in many slightly different
ways by each of the 26 cantons.

The secondary school involved focuses on preparing students for academic
studies in the field of arts. Since computer science was no official subject at the
time of our lesson, the students did not have any prior knowledge in algorithmics
and programming. More specifically, in contrast to many other classes which, at
this point, already knew basic things like classical symmetric ciphers, this was
the students’ first lesson on cryptography.

One of the authors has a teaching appointment for mathematics at this sec-
ondary school and tried the presented method in one of his classes. Mathematics
lessons during the first two secondary school years are given in small classes con-
sisting of up to 12 students. Students at the end of the second year are able to
deal with basic algebra and Euclidean geometry, linear and quadratic equations,
trigonometry as well as systems of linear equations.

The chosen class consists of students who are between 16 and 18 years old.
The lesson was carried out as a game during the last lesson of the school year
just after the students received their grades.

4 1t suffices to say that only a linear number of operations are necessary, e.g., “Five
operations are enough”.

Teaching Public-Key Cryptography in School 121

5.1 Experimental Setting

Although we did not implement a formal empirical study, some typical method-
ical constraints were fulfilled during our test lecture: we decided to assess the
available specific prior knowledge in cryptography (especially in public-key cryp-
tography), then to carry out the lecture, and to assess the students knowledge
again. We want to focus on measuring the students’ proficiency in the basic prin-
ciples of public-key cryptography after completing the teaching unit described.

The assessments were carried out anonymously. Each student received a per-
sonal tag. We gave the lecture in a compact (no longer than 45 minutes), con-
centrated and unstressed way.

5.2 Overview of the Lesson

The lesson was designed as simple as possible. We chose examples and metaphors
based on the everyday life of students inside and outside school. The teaching
goals correspond to the ones we described in Section Bl

Pre- and Post-Test. Both the pre- and the post-test were conducted based
on the same form containing the following 5 questions:

1. The concept of symmetric cryptography means . ..

O that in order to encrypt and subsequently decrypt a message, two differ-
ent pieces of information (“keys”) are necessary.

[J that in order to encrypt and subsequently decrypt a message, only one
(secret) information is necessary.

O I don’t know the concept of symmetric cryptography.

2. The concept of asymmetric cryptography means . ..

O that in order to encrypt and subsequently decrypt a message, two differ-
ent pieces of information (“keys”) are necessary.

O that in order to encrypt and subsequently decrypt a message, only one
(secret) information is necessary.

O I don’t know the concept of asymmetric cryptography.

3. In asymmetric cryptography ...

[] everyone is able to encrypt a message using the so-called public key.
O everyone is able to encrypt a message using the so-called private key.
O I don’t know the concept of asymmetric cryptography.

4. In asymmetric cryptography . ..

O everyone is able to decrypt an encrypted message rapidly using the so-
called public key.

O only the authorized recipient is able to decrypt an encrypted message
rapidly using the so-called private key.

O I don’t know the concept of asymmetric cryptography.

122 L. Keller et al.

5. In asymmetric cryptography . ..

O the decryption of an encrypted message is a very short process, if we
know a secret information, otherwise it is a very long one. Without this
secret information it is practically impossible to decrypt the encrypted
text.

O the decryption of an encrypted message is a very long process, indepen-
dent of whether you know a secret information or not. For everyone, it
is practically infeasible to decrypt the encrypted message.

O the decryption of an encrypted message is always a very short process,
independent of whether you know a secret information or not. Everyone
is able to decrypt the encrypted message without any effort.

O I don’t know the concept of asymmetric cryptography.

Protocol of the Lesson. We started the lesson with a short talk about se-
curity in the internet and mentioning the need for security when, e.g., buying
books online. The need for confidentiality while communicating was illustrated
on the basis of the situation in which two students wish to exchange encrypted
messages. Symmetric and asymmetric cryptography issues and terms were in-
troduced on the basis of the lock metaphor (where the public key is a padlock
and the corresponding private key is a key that opens it).

In the following phase, we introduced the cryptosystem illustrated in the
prior sections. The students were really impressed by the topics and by the way
how messages are encrypted or decrypted. The challenging task to find out the
trick, permitting to decrypt a ciphertext rapidly (as the teacher did) was really
motivating for the class. Here, no one suggested a solution based on solving a
system of linear equations. One student depicted an approach similar to the
expected solution (i. e., using the EDS), without being able to explain the details
of her strategy.

The fast decryption method was shown to the class and explained carefully.
After that, the post-test was done showing that almost all students reached the
teaching goals and were able to talk about the high-level ideas of public-key
cryptography as intended.

6 Conclusion

In this paper, we discussed a simple way of introducing the basic principles of
public-key cryptography to students of secondary schools. A more detailed discus-
sion of the cryptosystem will be part of an upcoming book [10]. We gave concrete
suggestions how to use the theoretical cryptosystem designed by Bell et al. [3]
to teach students of young age public-key cryptography in an entertaining way.
Additionally, we discussed our experiences while teaching these ideas. Finally, we
highlighted a specific lesson at a school in Switzerland. The lesson we described
was not planned as a formal experiment. However, it was possible to verify
that, after completing the unit, the majority of the students mastered the goals
we set.

Teaching Public-Key Cryptography in School 123

It therefore remains open to formalize this experiment and test this method

on a larger set of students. However, the results of this small class match our
general experiences when teaching cryptography.

References

10.

11.
12.

13.

14.

. Bauer, F.L.: Decrypted Secrets: Methods and Maxims of Cryptology, 4th edn.

Springer, Secaucus (2006)

Bell, T., Fellows, M., Witten, I.H.: Computer Science Unplugged - Off-line activities
and games for all ages (1999), www.csunplugged.org (last accessed: October 22,
2009)

Bell, T., Thimbleby, H., Fellows, M., Witten, 1., Koblitz, N., Powell, M.: Explaining
cryptographic systems. Computers & Education 40(3), 199-215 (2003)

Bundesrat and EDK. Verordnung des Bundesrates/Reglement der EDK iiber die
Anerkennung von gymnasialen Maturitatsausweisen (MAR) (1995), http://www.
sbf.admin.ch/evamar/reglemente/V0 MAR 1995 d.pdf| (last accessed: October 22,
2009)

Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic progressions.
In: Proc. of the Nineteenth Annual ACM Symposium on Theory of Computing
(STOC 1987), pp. 1-6. ACM, New York (1987)

Cull, P.: Perfect codes on graphs. In: Proc. of the 1997 International Symposium
on Information Theory, p. 452 (1997)

Delfs, H., Knebl, H.: Introduction to Cryptography: Principles and Applications.
Springer, Heidelberg (2002)

Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Transactions on
Information Theory 1T-22(6), 644-654 (1976)

Elmiger, D.: Die zweisprachige Maturitit in der Schweiz (2008), www.sbf.admin.
ch/htm/dokumentation/publikationen/bildung/bilingue matur de.pdf| (last
accessed: October 22, 2009)

Freiermuth, K., Hromkovic, J., Keller, L., Steffen, B.: Kryptologie, Lehrbuch In-
formatik. Vieweg+Teubner (to appear, 2009)

Hromkovié, J.: Algorithmic Adventures. Springer, Berlin (2009)

Nishida, T., Idosaka, Y., Hofuku, Y., Kanemune, S., Kuno, Y.: New methodology
of information education with “computer science unplugged”. In: Mittermeir, R.T.,
Systo, M.M. (eds.) ISSEP 2008. LNCS, vol. 5090, pp. 241-252. Springer, Heidelberg
(2008)

Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures
and public-key cryptosystems. Communications of the ACM 21(2), 120-126 (1978)
Salomaa, A.: Public-Key Cryptography. Springer, Berlin (1996)

www.csunplugged.org
http://www.sbf.admin.ch/evamar/reglemente/VO_MAR_1995_d.pdf
http://www.sbf.admin.ch/evamar/reglemente/VO_MAR_1995_d.pdf
www.sbf.admin.ch/htm/dokumentation/publikationen/bildung/bilingue_matur_de.pdf
www.sbf.admin.ch/htm/dokumentation/publikationen/bildung/bilingue_matur_de.pdf

	Teaching Public-Key Cryptography in School
	Introduction
	Technical Details for the Teachers
	How We Teach Public-Key Cryptography
	Teaching Goals
	Introducing the Concept of Public-Key Cryptography
	Teaching the Graph-Theoretical Cryptosystem

	General Experiences
	Introducing the Concept of Public-Key Cryptography
	Teaching the Graph-Theoretical Cryptosystem

	An Example Lesson at a Secondary School
	Experimental Setting
	Overview of the Lesson

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

